Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

Khanita Karaveg,^a‡ Zhi-Jie Liu,^b Wolfram Tempel,^b Ronald J. Doyle,^{a†} John P. Rose^b and Bi-Cheng Wang^b*

^aDepartment of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA, and ^bDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA

Current address: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
Deceased.

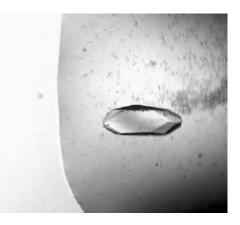
Correspondence e-mail: wang@bcl1.bmb.uga.edu Carbohydrate recognition plays a role in the pathogenesis of *Pseudomonas aeruginosa*, a common cause of opportunistic infection in humans. Crystals of a carbohydrate-binding protein from *P. aeruginosa*, lectin PA-1, have now been obtained. The crystals belong to space group *I*222, with unit-cell parameters a = 40.25, b = 72.30, c = 133.82 Å, and diffract to beyond 1.9 Å resolution on a rotating-anode X-ray source. Details of crystal-growth conditions, diffraction data collection and processing are reported.

Crystallization and preliminary X-ray diffraction

analysis of lectin-1 from Pseudomonas aeruginosa

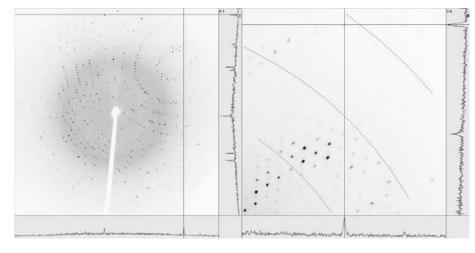
Received 26 November 2002 Accepted 16 April 2003

1. Introduction


The Gram-negative bacterium *Pseudomonas aeruginosa* is a significant cause of opportunistic infection in humans. The ubiquitous occurrence of the organism and its pathological effect on diverse tissues have recently been reviewed (Lyczak *et al.*, 2000). Colonization of the airways in 40–80% of adult individuals suffering from cystic fibrosis (Robinson, 2001) is a prominent example of a disease process specifically attributed to *P. aeruginosa*.

Recognition of specific carbohydrates plays an important role in P. aeruginosa infection (Avichezer et al., 1992, and references therein). The pathogen produces two cytoplasmic lectins called PA-1 and PA-2. Both lectins have been cloned and sequenced (Avichezer et al., 1992). A purified lectin preparation from P. aeruginosa was used in the production of a vaccine that protects mice from infection with the bacterium (Sudakevitz & Gilboa-Garber, 1987). PA-1 has been classified as a galactophilic lectin (Gilboa-Garber, 1982) and is composed of 121 amino acids with a broad hydrophilic stretch of amino acids sandwiched between N- and C-terminal hydrophobic domains. As would be expected, secondarystructure prediction indicates a protein rich in β -sheet (Avichezer *et al.*, 1992). Very little is known about the tertiary structure of the lectin, the mode of aggregation (if any) or the location of the galactose- and adenine-binding sites (Stoitsova et al., 2003). In order to answer these questions, a crystallographic analysis of PA-1 was initiated. Here, we report the preliminary details of the X-ray diffraction analysis.

2. Materials and methods


Lectin PA-1 was purchased as a lyophilized powder from Sigma-Aldrich Corp. (catalogue No. L9895). The protein was reconstituted to a concentration of 20 mg ml^{-1} in 10 mMK₂HPO₄, 10 mM KH₂PO₄ pH 7.4, 150 mM NaCl, 1 mM CaCl₂, 1 mM MgCl₂ (Gilboa-Garber, 1982) and 0.25 M NDSB-201 (pyridinium propane sulfonate). The solution was passed through a 0.45 µm filter membrane. Crystallization experiments were conducted using the hanging-drop vapor-diffusion method: 2 µl of protein solution was mixed with 2 µl of precipitant solution on a microscope cover slip. The slip was inverted and incubated at 291 K over a well containing 0.5 ml of the same precipitant solution. Crystallization was attempted using ammonium sulfate solutions with concentrations ranging from 1.0 to 2.0 M as precipitant solution. Diffraction-quality crystals were obtained using 1.7-1.8 M ammonium sulfate as precipitant.

After 2 d, a crystal measuring approximately $0.2 \times 0.2 \times 0.4$ mm (Fig. 1) was harvested and briefly soaked in a cryoprotectant solution that contained a 1:4(v:v) mixture of glycerol and well solution. After soaking, the crystal was mounted on the goniometer using a nylon fiber

Figure 1 Crystal of lectin PA-1.

© 2003 International Union of Crystallography

Figure 2

Typical 0.5° oscillation diffraction image of PA-1: crosshairs highlight a reflection at 1.85 Å with $I/\sigma(I) = 6.5$.

loop (Teng, 1990) and flash-cooled (Hope, 1988) to 100 K in a nitrogen-gas cold stream. Diffraction data were recorded on a Rigaku R-AXIS IV image-plate detector with a Rigaku FR-D generator running at 4.75 kW equipped with Rigaku/MSC Max-Flux confocal optics. The crystal-to-detector distance was set to 150.0 mm. The data set consisted of 360 0.5° oscillation images recorded from a single crystal using an exposure time of 5 min per image. Data were indexed, integrated and scaled using the HKL suite (Otwinowski & Minor, 1997). Self-rotation and anomalous Patterson map analysis were performed using the SHELXTL suite of programs (v. 6.12, Bruker AXS).

3. Results and discussion

Crystallization in the presence of ammonium sulfate was attempted without preceding sparse-matrix trials. Initial crystals were observed after 1 d. While the presence of NDSB-201 in the protein solution was not strictly required for the crystallization of PA-1, it is noteworthy that the inclusion of NDSB-201 prevented precipitation during storage of the protein stock solution at 277 K.

Diffraction of the PA-1 crystal extended beyond 1.9 Å (Table 1, Fig. 2). Indexing of the diffraction pattern indicated that the crystal has a body-centered orthorhombic lattice, with unit-cell parameters a = 40.25, b = 72.30, c = 133.82 Å. Assuming a single molecule per asymmetric unit, in either space group I222 or $I2_12_12_1$, the calculated Matthews coefficient $V_{\rm M}$ (Matthews, 1968) is $3.78 \text{ Å}^3 \text{ Da}^{-1}$, which corresponds to a solvent content of 67%. Assuming two molecules per asymmetric unit, $V_{\rm M}$ is calculated to be $1.89 \text{ Å}^3 \text{ Da}^{-1}$, with a corresponding solvent content of 35%. A self-rotation search did not produce significant peaks on the $\kappa = 180^{\circ}$ section. However, this finding alone does not rule out or support the presence of a homodimer in the asymmetric unit.

Attempts to solve the structure using the sulfur anomalous scattering signal recorded in-house from native crystals have been initiated. Four putative sulfur sites have been identified with high probability using the program XM (Bruker *SHELXTL* package; Table 2) using a 3 Å resolution cutoff in space group I222. The same analysis in space group $I2_12_12_1$ failed to give a convincing solution. In addition, analysis of the 'sulfur' substructure did not show a consistent set of twofold-related sites as

Table 1

Data-processing statistics.

Values in parentheses are for the highest resolution shell.

Resolution range (Å)	30.00-1.90	
	(1.97 - 1.90)	
Unique observed reflections	15710 (1410)	
Completeness (%)	99.0 (91.0)	
$\langle I \rangle / \langle \sigma(I) \rangle$	43.9 (14.7)	
Redundancy of unique reflections (%)		
More than 3 observations	92.9 (60.5)	
More than 6 observations	65.4 (8.9)	
$R_{\rm sym}$ † (%)	3.5 (7.0)	

† $R_{\text{sym}} = \sum |I - \langle I \rangle| / \sum I.$

Table 2

XM heavy-atom statistics.

Space group	<i>I</i> 222	I2 ₁ 2 ₁ 2 ₁
Correlation coefficient (all)	31.59	16.15
Correlation coefficient (weak)	21.13	7.52
Patterson FOM	30.75	18.69
No. of sites	4	4
No. of inter-site pairs	0	0

would be expected for a homodimer in the asymmetric unit. Thus, based on the XM analysis, the most probable space group is I222 with one molecule per asymmetric unit. The structure determination of PA-1 is in progress.

The work presented herein was in part supported by National Institutes of Health grant DE-12852-01 and the University of Georgia Research Foundation.

References

- Avichezer, D., Catcoff, D. J., Garber, N. C. & Gilboa-Garber, N. (1992). J. Biol. Chem. 267, 23023–23027.
- Gilboa-Garber, N. (1982). Methods Enzymol. 83, 378–385.
- Hope, H. (1988). Acta Cryst. B44, 22-26.
- Lyczak, J. B., Cannon, C. L. & Pier, G. B. (2000). *Microbes Infect.* 2, 1051–1060.
- Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497.Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.
- Robinson, P. (2001). Thorax, 56, 237-241.
- Stoitsova, S. R., Boteva, R. N. & Doyle, R. J. (2003). *Biochim. Biophys. Acta*, **1619**, 213–219. Sudakevitz, D. & Gilboa-Garber, N. (1987). *FEMS*
- Microbiol. Lett. **43**, 313–315. Tang. T. X. (1900) *J. Appl. Crust.* **23**, 387, 301
- Teng, T.-Y. (1990). J. Appl. Cryst. 23, 387-391.